

PII: S0040-4039(97)00060-9

Synthesis and Characterisation of Two Azobenzene Modified 1,3-Calix[4]-bis-crowns as Artificial Potentially Allosteric Systems.

Mohamed Saadioui, Zouhair Asfari, Jacques Vicens*

E. C. P. M., Laboratoire de Chimie des Interactions Moléculaires Spécifiques, associé au C. N. R. S. 1, rue Blaise Pascal, F-67008, Strasbourg, France

Abstract: Azo calix[4]crowns1-[2,2'] and 1-[4,4'] have been synthetized consisting in *unsymmetrical* 1,3-calix[4]-*bis*-crowns combining one polyether crown-6 and one *azo*benzene modified crown-6, O-attached at each side of a calix[4]arene in the 1,3-alternate conformation. Preliminary complexation of alkalis and ammonium picrates showed the cations to be located in the unmodified crown ether of the 1:1 complexes. Complexation induced changes in the trans/cis ratio of the azobenzene unit of 1-[4,4'] by an allosteric mechanism probably due to conformational changes.

© 1997, Published by Elsevier Science Ltd. All rights reserved.

With respect to biological structures that transmit information through molecular motions,¹ supramolecular chemists have developped artificial allosteric systems in which *negative or positive cooperativity* or *noncooperativity*² is induced by metal-binding,³ neutral substrate complexation,⁴ conformational changes,⁵ and subunit aggregation⁶. A recent example has been given showing evidence of allosteric communication between the metal-binding lower rim and the sugar binding upper rim on a calix[4]crown platform.⁷ Positive and negative cooperativities were observed and attributed to a conformational change of the calix unit in the 1,2-alternate conformation.⁷

According to our previous reports on 1,3-alternate calix[4]-bis-crowns⁸ and related azobenzene modified derivatives,⁸⁻¹¹ we decided to prepare allosteric systems 1 in which an information given at one side of the calix unit could be transmitted to the other, the calix[4]arene unit being used as a relay by the occurrence of conformational changes. Systems 1 consist in *unsymmetrical* 1,3-calix[4]-bis-crowns combining one polyether crown-6 and one *azo*benzene modified crown-6, O-attached at each side of a calix[4]arene in the 1,3-alternate conformation. 1,3-Calix[4]-bis-crown-6 has been proved to complex potassium, rubidium and cesium cations¹² with good stability constants ranging from 4.1 to 5.4 in methanol and acetonitrile respectively.¹³ It is expected that the complexation in the unmodified crown-6 of 1 may be influenced by the trans/cis geometry of the azobenzene unit and *vice versa*. The two systems 1-[2,2'] and 1-[4,4'] were synthetized containing 2,2'- and 4,4'-azobenzene units respectively.

* Fax: [33](0)388604539 E-mail: vicens@chimie.u-strasbg.fr

Scheme 1. Synthetic pathways to 1-[2,2'] and 1-[4,4']

The synthesis of 1-[2,2'] and 1-[4,4'] is illustrated in Scheme 1. 1-[2,2'] was produced by reaction of the already known⁹ calix[4]-(2,2'-azobenzo)-crown-6 2 in cone conformation with pentaethylene glycol ditosylate in the presence of K_2CO_3 in acetonitrile. The constrained 1,3-alternate conformation was deduced from the ¹H-NMR spectrum of 1-[2,2'] presenting a singlet at 3.69 ppm for the Ar-CH₂-Ar protons of the calix unit.¹⁴ Similarly dinitro calix[4] 3⁹ was reacted with pentaethylene glycol ditosylate in the presence of K_2CO_3 in acetonitrile to produce dinitro calix[4]crown-6 4 which was further reduced into diamino calix[4]crown-6 5 by reacting with NH₂NH₂.H₂O on graphite as described in reference.¹⁶ The cyclization was performed by oxydative coupling with the use of activated MnO₂ in benzene¹⁷ to give 1-[4,4']. The 1,3-alternate conformation of 1-[4,4'] was confirmed by the presence of a singlet at 3.72 ppm in its ¹H-NMR spectrum.¹⁴ UV-Visible spectra¹⁴ were in agreement of the proposed structures due to their similarity with already published azobenzene calixcrowns containing 2,2'- and 4,4'-azobenzene units.⁹⁻¹¹ Combination of UV-Visible and ¹H-NMR data allowed the determination of trans/cis ratio of 99/1 and 70/30 for 1-[2,2'] and 1-[4,4']

respectively.¹⁴ CPK models indicated that in the cis-form of the 2,2'-azobenzene derivative, a greater number of non-bonded repulsions occurs.

Complexation studies of 1-[2,2'] and 1-[4,4'] with potassium, rubidium, cesium and ammonium picrates were realized by means of ¹H-NMR. After a period of 2 days reaction at r.t. between solid picrates and a chloroform solution of the ligands 1 the ratio of metal to ligand in solution, as estimated by integration of the picrate proton resonance vs those of aromatics, was 1:1.

For the 1:1 complexes of 1-[4,4'] we observed changes in the chemical shifts due to complexation in the ¹H-NMR spectra for those protons corresponding to the unmodified ether crown-6 chain whereas the protons belonging to the azo modified crown were unchanged. This indicated the cation to be located in the crown-6 unit in agreement with the good stability constants determined for the complexes 1,3-calix[4]-bis-crown-6 with alkali cations¹³ and the poor alkali-cation transporting properties of a 4,4'-azobenzene modified calix[4]crown-6 in the 1,3 alternate conformation.¹¹ At the same time we observed changes in the trans/cis ratio from 70/30 for the free ligand to 80/20, 80/20, 75/25, and 85/15 for K⁺, Rb⁺, Cs⁺, and NH₄⁺ complexes of 1-[4,4'] respectively. The largest change was observed for NH₄⁺ probably because it formed the strongest complex.

The change in the trans/cis ratio of the benzene unit is probably thermally induced through the conformational change of the calix[4]arene serving as a relay-element.

References and Notes

- 1. Monod. J.; Changeux, J.-P.; Jacob, F. J. Mol. Biol. 1963, 6, 306-329.
- 2. Rebek, J. Acc. Chem. Res. 1984, 17, 258-264.
- Rebek, J.; Wattley, R. V.; Costello, T.; Gadwood, R.; Marshall, L. J. Am. Chem. Soc. 1980, 102, 7400-7402; Gavina, F.; Luis, S. V.; Costero, A. M.; Burgete, M. I.; Rebek, J. J. Am. Chem. Soc. 1988, 110, 7140-7143; Bauer, H.; Briaire, J.; Staab, H. A. Tetrahedron Lett. 1985, 6175-6178; Maruyama, K.; Sohmiya, H.; Tsukube, H. J. Chem. Soc. Perkin Trans. I 1986, 2069-2074, Gagnaire, G.; Gellon, G. Pierre, J.-L. Tetrahedron Lett. 1988, 933-936; Gagnaire, G.; Jeunet, A.; Pierre, J.-L. Tetrahedron Lett. 1988, 6507-6510; Sijbesma, R. P.; Nolte, J. Phys. Org. Chem. 1992, 5, 649-655; J. M. Sijbesma, R. P.; Nolte, J. M. J. Am. Chem. Soc. 1991, 113, 6695-6696; Costero, A. M.; Rodriguez, S. Tetrahedron Lett. 1992, 623-626; Nabeshima, T.; Inaba, T.; Furukawa, N.; Hosoya, T.; Yano, Y. Inorg. Chem. 1993, 32, 1407-1416; Beer, P. D.; Rothin, A. S. J. Chem. Soc. Chem. Commun. 1988, 52-54; Schneider H.-J.; Werner, J. Chem. Soc. Chem. Commun. 1992, 490-491; F. Rodriguez-Ubis, J. C.; Juanes, O.; Brunet, E. Tetrahedron Lett. 1994, 1295-1298.
- 4. Gagnaire, G.; Jeunet, A.; Pierre, J.-L. Tetrahedron Lett. 1991, 2021-2024.
- 5. Shinkai, S.; Nakaji, T.; Ogawa, T.; Shimegatsu, K.; Manabe, O. J. Am. Chem. Soc. 1981, 103, 111-115.
- Traylor, T. G.; Mitchell, M. J.; Ciccone, J. P.; Nelson, S. J. Am. Chem. Soc. 1982, 104, 4986-4989; Tabushi, Sasaki, T. J. Am. Chem. Soc. 1983, 105, 2901-2902; Toupance, T.; Ahsen, V.; Simon, J. J. Am. Chem. Soc. 1994, 116, 5352-5361.
- 7. Ohseto, F.; Yamamoto, H.; Matsumo, H.; Shinkai, S. Tetrahedron Lett. 1995, 6911-6914.
- 8. Asfari, Z.; Nierlich, M.; Thuéry, P.; Lamare, V.; Dozol, J. F.; Leroy, M.; Vicens, J. Anal. de Quimica Int. Ed. 1996, 92, 260-266 (article review on our results).
- 9. Saadioui, M.; Asfari, Z.; Reynier, N.; Dozol, J. F.; Vicens, J. J. Incl. Phenom. accepted for publication.
- 10. Reynier, N. Thèse de Doctorat de l'Université Louis Pasteur de Strasbourg, April 1996.
- 11. Saadioui, M.; Reynier, N.; Dozol, J. F.; Asfari, Z.; Vicens, J. J. Incl. Phenom. submitted
- 12. Asfari, Z.; Bressot, C.; Vicens, J.; Hill, C.; Dozol, J. F.; Rouquette, H.; Eymard, S.; Lamare, V.; Tournois, B. Anal. Chem. 1995, 67, 3133-3139.
- 13. Arnaud-Neu, F.; Asfari, Z.; Souley, B.; Vicens, J. New J. Chem. 1996, 20, 453-463.

14. General: Mps, capillaries under N₂, Büchi 500. Chromatography, SiO₂ columns with Kieselgel Merck (Art. 11567). Thin layer chromatography (TLC), SiO₂ Merck plates (Art. 6484). UV-Visible recorded on Cary 13. ¹H-NMR in CDCl₃, Bruker SY200 (δ in ppm, J in Hz). FAB (+) MS, VG-Analytical ZAB HF. Elemental analyses performed at the Service de Microanalyse of the Institut de Chimie de Strasbourg.

1-[2,2']: Calix[4]-(2,2'-azobenzo)-crown-6 2 (0.300 g, 0.38 mmol), K₂CO₃ (5.252 g, 38.00 mmol) and CH₃CN (300 mL) were stirred for 24 h at r.t. under N₂. Pentaethylene glycol ditosylate (0.207 g, 0.38 mmol) were added. After refluxing for 10 days, solvents were

evaporated to dryness and the residue was dissolved in CH₂Cl₂. The solution was acidified (1N HCl). The organic solution was dried (Na₂SO₄), filtered and evaporated to dryness. Chromatography (SiO₂, 80:20 CH₂Cl₂:acetone) followed by precipitation in methanol afforded pure 1-[2,2] (0.136 g, 37 %). Red powder. M.p. 150-151 °C. TLC (SiO₂, 70:30 CH₂Cl₂:acetone): Rfs = 0.43. UV-Visible (acetonitrile, $c = 10^{-4}$ M) $\lambda_{trans} = 354$ nm, $\varepsilon_{trans} = 7.96 \times 10^{3}$ mol⁻¹¹. Trans/cis ratio was calculated 99/1. ¹H-NMR (200 MHz, CDCl₃): 7.71 (d, J = 8.0, 2 ArH azobenzene), 7.40 (t, J = 8.0, 2 ArH azobenzene), 7.17-7.06 (m, 6 ArH), 7.00 (d, J = 7.5, 4 ArH calix), 6.90-6.80 (m, 4 ArH), 6.66 (t, J = 7.5, 2 ArH calix), 4.30 (t, J = 6.0, 2 N=NArOCH₂), 4.07-3.73 (m, 6 CH₂), 3.69 (s, 4 ArCH₂Ar), 3.59-3.56 (m, 4 CH₂), 3.43 (m, 2 CH₂), 3.28 (t, J = 6.0, 2 CH₂), 3.08 (t, J = 6.0, 2 CH₂). FAB (+) MS: m/2 981.3 (M⁺). Anal. Calcd. for Ci₈H₆₄N₂O₁₂: C, 71.00, H, 6.57. Found. C, 71.27; H, 6.72.

4: Same as for 1-[2,2']. 3 (3.000 g, 3.55 mmol), K_2CO_3 (4.900 g, 35.50 mmol), pentaethylene glycol ditosylate (1.944 g, 3.55 mmol) and CH₃CN (150 mL) were refluxed for 13 days under N₂. Chromatography (SiO₂, 85:15 CH₂Cl₂:acetone) followed by precipitation in methanol afforded pure 4 (2.04 g, 55 %). White powder. M. p. 118-119 °C. ¹H-NMR (200 MHz, CDCl₃) 8.19 (d, J = 9.0, 4 ArH nitrobenzene), 7.11 (d, J = 7.0, 4 ArH calix), 7.09 (d, J = 7.5 Hz, 4 ArH calix), 6.98 (d, J = 9.0, 4 ArH nitrobenzène), 6.84 (t, J = 7.5 Hz, 2 ArH calix), 6.74 (t, J = 7.5, 2 ArH calix), 4.19 (t, J = 4.5, 2 ArOCH₂), 3.76-3.40 (m, 20 CH₂ and ArCH₂Ar). Anal. Calcd. for C₃₈H₆₄N₂O₁₆: C, 66.65; H, 6.17. Found. C, 66.58; H, 6.07.

5: 4 (1.70 g, 1.62 mmol), graphite (8.00 g) and absolute EtOH(150 mL) were stirred at r.t for 2 h under N₂. NH₂NH₂.H₂O (8.00 g, 159.80mmol) dissolved in absolute EtOH (20 mL) was added dropwise and the reaction mixture was refluxed for 13 days. After cooling to r.t., the solution was filtered over celite and washed with CH₂Cl₂. The solvents were evaporated to dryness to afford 5 (1.483 g, 92 %). Transparent oil. 5 was used without purification. ¹H-NMR (200 MHz, CDCl₃): 7.10 (d, J = 7.5, 8 ArH), 6.88-6.72 (m, 8 ArH), 6.63 (d, J = 9.0, 4 ArH aminobenzene), 4.03 (t, J = 5.0, 2 ArOCH₂), 3.77-3.41 (m, 40 CH₂, ArCH₂Ar and ArNH₂ exchangeable with D₂O), 3.34 (t, J = 6.0, 2 CH₂). Anal. Calcd. for C₅₈H₆₈N₂O₁₂: C, 70.71; H, 6.96. Found. C, 70.86; H, 7.22.

1-[4,4']: In a 500 mL round-bottomed flask equipped with a Dean-Stark, 5 (1.400 g, 1.42 mmol), activated MnO₂ (8.00 g, 92.01 mmol) and benzene (250 mL) were stirred vigorously at reflux for 1 day. After filtration through celite, washing with CH₂Cl₂ and drying (MgSO₄) the solvents were evaporated to dryness. Chromatography (SiO₂, 85:15 CH₂Cl₂:acetone) followed by precipitation in methanol afforded pure of 1-[4,4'] (0.414 g, 30 %). Orange powder. M. p. 216-217.°C. TLC (SiO₂, 90:10 CH₂Cl₂:acetone): Rfs = 0.40 (more intense) and 0.20 attributed to trans (the less polar) and csi (the more polar) isomers respectively. UV-Visible (acetonitrile, $c = 5 10^{-5}$ M) $\lambda_{trans} = 361$ nm, $\varepsilon_{trans} = 28.09 \times 10^{3}$ mol.⁻¹¹.cm⁻¹, $\varepsilon_{cis} = 3.80 \times 10^{3}$ mol.⁻¹¹.cm^{-1,15} ¹¹H-NMR (200 MHz, CDCl₃) 8.06 (d, AB system, J = 9.0, 4 ArH azobenzene, trans isomer), 7.29 (d, AB system, J = 9.0, 4 ArH azobenzene, trans isomer), 7.09 (d, AB system, J = 8.0, 2 ArH calix, trans isomer), 6.84-6.73-m, 6 ArH, cis isomer), 6.65 (t, J = 7.5, 2 ArH calix, trans isomer), 6.51 (d, J = 7.5, 4 ArH calix, trans isomer), 6.84-6.73-m, 6 ArH, cis isomer), 6.32 (t, J = 7.5, 2 ArH calix, trans isomer), 4.48 (t, J = 4.0, 2 N=NArOCH₂, trans isomer), 4.22 (t, J = 6.0, 2 N=NArOCH₂, cis isomer), the remaining part of the spectrum belongs to both isomers: 3.83-3.76 (m, 10 CH₂), 3.72 (s, 4 ArCH₂Ar), 3.69-3.60 (m, 2 CH₂), 3.38 (m, 4 ArOCH₂). The ratio between trans/cis isomers was calculated 70:30 from the triplets at 4.30 and 4.22 ppm. FAB (+) MS *m z* 981.3 (M⁺). *Calcd.* for C₅₈H₆₄N₂O₁₂: C, 71.00, H, 6.57 *Found.* C, 71.26, H, 6.73.

15. ε_{trans}/ε_{cis} was chosen equal to 7.4 with comparison to related compounds see: Shinkai, S.; Nakaji, T.; Ogawa, T.; Shigematsu, K.; Manabe, O. J. Amer. Chem. Soc. **1981**, 103, 111-115.

16. Han, B. H.; Shin, D. H.; Cho, S. Y. Tetrahedron Lett. 1985, 6233-6237.

17. Firouzabadi, H.; Mostafavipor, Z. Bull. Chem. Soc. Jpn 1983, 56, 914-918; Barakat, M. Z.; Wahab, M. F. A.; El-Sadr, M. M. J. Chem. Soc. 1956, 4685-4687; Wheeler, O. H.; Gonzalez, D. Tetrahedron, 1964, 20, 189-193.

(Received in France 26 November 1996; accepted 10 January 1997)